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BACKGROUND: Reduced fetal growth increases the risk for adverse health outcomes. Growing evidence suggests that metal exposures contribute to
reduced fetal growth, but little is known about the effects of complex metal mixtures.
OBJECTIVES: We investigated the impact of a complex mixture of metals on birth weight for gestational age (BW for GA) in the Maternal and Developmental
Risks fromEnvironmental and Social Stressors study, a predominately lower-incomeHispanic pregnancy cohort in LosAngeles, California.
METHODS: Cadmium (Cd), cobalt (Co), mercury (Hg), nickel (Ni), molybdenum (Mo), lead (Pb), antimony (Sb), tin (Sn), and thallium (Tl) were
measured by inductively coupled plasma mass spectrometry (ICP-MS) in maternal urine samples collected in early pregnancy (median GA: 13.1 wk).
Speciated urinary arsenic (As) (inorganic+monomethyl+dimethyl As) was measured by high-performance liquid chromatography coupled to ICP-
MS. Primary analyses focused on a mixture of seven metals that have previously been associated individually with fetal growth (i.e., As, Cd, Co, Hg,
Ni, Pb, Tl) (n=262). In exploratory analyses, we additionally examined three metals that have been less studied in relation to fetal growth (i.e., Mo,
Sb, Sn). Covariate-adjusted Bayesian kernel machine regression was used to investigate metal mixture associations with BW for GA z-scores.

RESULTS: In primary analyses, Hg and Ni ranked highest as predictors of BW for GA. An inverse linear association was estimated for Hg, whereas a
positive association was estimated for Ni at low-to-moderate concentrations. A potential interaction between Hg and Ni was also identified. In our ex-
ploratory analysis, Sb ranked highest as a predictor of BW for GA, followed by Hg and Ni.
CONCLUSIONS: Our findings suggest that in this understudied population, Hg may reduce fetal growth, whereas Ni may promote fetal growth. We also
identified Sb as a potential metal of concern for this population, which merits additional investigation. https://doi.org/10.1289/EHP7201

Introduction
Birth weight (BW) is an indicator of cumulative fetal growth that
has been closely related to health risk later in life (Barker and
Thornburg 2013). Rates of low BW have been increasing in the
United States (Martin et al. 2018; Womack et al. 2018). This may
have important consequences for public health given that low
BW is an established risk factor for a diverse number of adverse
health outcomes, including morbidity and mortality in infancy
(McCormick 1985), cognitive deficits (Oudgenoeg-Paz et al.
2017), and cardiovascular disease and metabolic syndrome in
adulthood (Visentin et al. 2014). Fetal growth is impacted by a
variety of maternal and environmental factors, such as maternal
age, diet, and in utero tobacco smoke exposure (Nardozza et al.
2017), and a growing body of evidence indicates that prenatal ex-
posure to toxic metals and metalloids (hereafter referred to col-
lectively as metals), including arsenic (As), cadmium (Cd),
mercury (Hg), lead (Pb), and thallium (Tl), also contributes to

reduced fetal growth (Ballester et al. 2018; Hoffman 2000;
Khoshhali et al. 2020; Kim et al. 2017; Kippler et al. 2010, 2012;
Mikelson et al. 2019; Milton et al. 2017; Rabito et al. 2014;
Ramón et al. 2009a; Rodosthenous et al. 2017; Thomas et al.
2015; Vejrup et al. 2014; Vigeh et al. 2018; Xia et al. 2016). In
contrast, essential trace elements are important for normal fetal
growth and development. For example, cobalt (Co) is a compo-
nent of vitamin B12 that has been associated with higher BW
(Mikelson et al. 2019). In addition, some metals, such as nickel
(Ni) exhibit both toxic and nutritional properties (Nielsen 2012),
and both adverse and protective effects have been reported in
relation to fetal growth (Cabrera-Rodríguez et al. 2018;
Deyssenroth et al. 2018; Jalali and Koski 2018; Pedersen et al.
2016; Sun et al. 2018; Vaktskjold et al. 2007).

Although humans are typically exposed to a mixture of toxic
and essential elements, most studies have evaluatedmetals individ-
ually in relation to fetal growth. Yet, in combination, certainmetals
may exert toxic effects even at relatively low levels of exposure
owing to synergistic effects (ClausHenn et al. 2014), whereas other
metals may act antagonistically by inhibiting each other’s absorp-
tion or tissue uptake (Davidson et al. 2015). Although several
recent studies have begun examining simple mixtures (e.g., three
elements) in relation to fetal growth (Cabrera-Rodríguez et al.
2018; Cassidy-Bushrow et al. 2019; Signes-Pastor et al. 2019), few
studies have considered complex mixtures (Deyssenroth et al.
2018; Govarts et al. 2016), which are more representative of
human exposures. This has been particularly understudied in mi-
nority populations in the United States. The objective of the present
study was, therefore, to investigate the impact of early pregnancy
exposure to a complexmixture ofmetals on fetal growth in a cohort
of predominately lower-income Hispanic mother–newborn pairs
in urban Los Angeles.
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Methods

Study Population
The Maternal and Developmental Risks from Environmental and
Social Stressors (MADRES) study is an ongoing, prospective
pregnancy cohort, which began in November 2015 and has been
described previously (Bastain et al. 2019). Briefly, participants
are recruited from four prenatal care providers in Los Angeles,
California, including two community health clinics, one county
hospital prenatal clinic, and one private obstetrics and gynecol-
ogy practice. A small number of participants are also recruited
through self-referral from community meetings and local adver-
tisements. Most of the participating clinics serve predominately
lower-income Hispanic populations. Women are eligible to par-
ticipate in the MADRES study if their pregnancy is at <30 wk of
gestation at the time of recruitment, they are ≥18 years of age,
and they can speak either English or Spanish fluently. Exclusion
criteria included the following: a) human immunodeficiency
virus–positive status; b) having a physical, mental, or cognitive dis-
ability that would prevent participation in the study or the ability to
provide informed consent; c) current incarceration; and d) multiple
gestation. Informed consent was obtained from each participant at
study entry, and the study was approved by the University of
Southern California’s Institutional Review Board.

Given evidence that fetal growth trajectories are largely deter-
mined by conditions in early pregnancy (Bloomfield et al. 2006)
and evidence that early pregnancy may be a particularly sensitive
window for metals exposures (Cheng et al. 2017; Rabito et al.
2014; Vigeh et al. 2018), the present study focused on partici-
pants who enrolled before 20 wk of gestation and provided a
urine sample at their first study visit. We restricted our analyses
to 262 participants who a) enrolled prior to urine metals analysis
(fall 2019); b) had not withdrawn from the study; and c) had
complete covariate information. Overall, this subset of 262 par-
ticipants was similar to all MADRES study participants who en-
rolled prior to fall 2019 at <20 wk of gestation although these
participants were slightly older and there was a larger percentage
of foreign-born Hispanic and a smaller percentage of non-
Hispanic black participants (Table S1).

Urine Collection
Spot urine samples were collected by participants during their first
study visit [median gestational age (GA): 13.1wk] in a 90-mL ster-
ile specimen container. Samples were transported on ice to the lab-
oratory within 1 h. One and one-half–milliliter aliquots were then
stored at –80�C in 2-mL sterile cryovials (VWR).

Urine Metals
Urine metals analysis was performed by NSF International in col-
laboration with the Children’s Health Exposure Analysis Resource
(CHEAR). Metals were measured using inductively coupled
plasma mass spectrometry (ICP-MS) based on the Centers for
Disease Control and Prevention method 3018.3, with modifica-
tions for the expanded metals panel and the Thermo Scientific
iCAP™ RQ instrument (serial number RQ0029). The elements
measured for this panel include the following: antimony (Sb), As,
barium, beryllium, Cd, cesium,Co, copper, chromium,Hg,manga-
nese, molybdenum (Mo), Ni, Pb, platinum, tin (Sn), Tl, tungsten,
uranium, vanadium, and zinc. All quality control samples, blanks,
and urine samples were diluted 10-fold in a diluent consisting of
2% nitric acid (HNO3) solution containing the internal standards
and gold. Standards were prepared in 1% trace metal–grade HNO3
and diluted 10-fold with a diluent consisting of 2% HNO3 solution
containing the internal standards in order to minimize any matrix

effect. The rinse solution for the instrument was 1% trace metal–
grade HNO3. The samples were analyzed in two analysis modes:
a) standard (default) for the majority of metals, and b) kinetic
energy discrimination for vanadium, chromium, As, Mo, and Cd.
Percentages of coefficient of variation were between 0.8% and
7.0% for all elements. Five field blanks were sent out for testing,
and 96% ofmeasures were below the limits of detection (LODs).

For our primary analysis, we restricted to metals a) that were
above the LOD for ≥60% of participants and b) for which urine
is considered an accepted matrix for assessing exposure (ATSDR
1992; Chou et al. 2007; Faroon et al. 2004, 2012; Fay and
Ingerman 2005; Risher and DeWoskin 1999). Our primary analy-
sis was further restricted to metals for which there was evidence
that they may impact fetal growth (Cabrera-Rodríguez et al.
2018; Deyssenroth et al. 2018; Hoffman 2000; Jalali and Koski
2018; Khoshhali et al. 2020; Kim et al. 2017; Mikelson et al.
2019; Milton et al. 2017; Pedersen et al. 2016; Rabito et al. 2014;
Rodosthenous et al. 2017; Sun et al. 2018; Vaktskjold et al. 2007;
Vejrup et al. 2014; Vigeh et al. 2018). Six metals (As, Cd, Co,
Hg, Ni, Tl) met all three criteria. We also included Pb in our pri-
mary analysis given its established toxicity, even though blood is
the preferred matrix for exposure assessment (Sommar et al.
2014). In exploratory analyses, we included three additional met-
als that met the first two criteria: Mo, Sb, and Sn but that have
been less studied in relation to fetal growth. Importantly, the As
measure from the CHEAR metals panel is total As, which is com-
posed of many different As species and metabolites, including
arsenobetaine (AsB), which is a nontoxic form of As derived
from fish and seafood (Tseng 2009). Therefore, we replaced the
total As measure from this panel with total speciated urinary As
data, as described in more detail in the next section. The number
(percentage) of samples below the LOD for the elements retained
from the metals panel were as follows: Cd: 85 (32.4%), Co: 3
(1.1%), Hg: 3 (1.1%), Mo: 2 (0.8%), Ni: 33 (12.6%), Pb: 46
(17.6%), Sb: 88 (33.6%), Sn: 36 (13.7%), and Tl: 65 (24.8%).
Values below the LOD were replaced with the LOD divided by
the square root of 2 given that this method has been recom-
mended for measures that are not highly skewed (geometric
standard deviations <3) (Hornung and Reed 1990).

Speciated Urinary As
Speciated urinary As was measured by the Arizona Laboratory
for Emerging Contaminants (Michel-Ramirez et al. 2020), using
methods previously described by the Centers for Disease Control
and Prevention (Branch and Jones 2004). Briefly, arsenite (AsIII),
arsenate (AsV), monomethyl arsenic (MMA), dimethyl arsenic
(DMA), and AsB were measured by high-performance liquid
chromatography, using the Hamilton PRP-X100 column, coupled
to ICP-MS. Working calibration standards were prepared daily
for each As species at concentrations ranging from 0.2 to
10 lg=L. For quality control, a mid-range calibration check
sample was prepared using 2 lg=L mixed species standard. For
each batch of 30 samples, at least 3 samples were spiked with a
low-to-mid–range standard to monitor As recovery for each
species. Evaluation of recovery was calculated by comparing
the sum of the individual species to the reported total As mea-
sure. Measures were considered acceptable if they were within
± 10% of the total As concentration. LODs across four analyti-
cal runs ranged from 0.011 to 0:040 lg=L for AsIII, 0.020 to
0:143 lg=L for AsV, 0.020 to 0:086 lg=L for MMA, and 0.014
to 0:169 lg=L for DMA. Values below the LOD were set to the
LOD divided by the square root of 2. Total speciated urinary
arsenic (i.e., excluding AsB) was calculated by summing the
inorganic As metabolites (AsIII+AsV), MMA, and DMA. This
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variable was used as the primary As measure for all statistical
analyses.

Specific Gravity
Urine specific gravity (SG) was measured by a refractometer (Itago),
and urinary metal concentrations were adjusted for SG to account for
urine dilution using the following formula: Ac =A× ½ðSGmean–1Þ=
ðSG–1Þ�, where Ac = the SG-adjusted metal concentration,
SGmean = the mean SG value for the study sample, and SG=
the SG value of the participant (Boeniger et al. 1993).

BW for GA Z-Scores
To evaluate fetal growth, we calculated sex-specific BW for GA
z-scores using a representative U.S. reference (Aris et al. 2019).
This reference was selected because it uses obstetric estimates of
GA at birth and was updated recently, reflecting current trends in
obesity and gestational diabetes, which can impact fetal growth
(Aris et al. 2019). BW measures were abstracted from medical
records. If this information was missing (n=22), BW values
were filled in using proxy-reported information obtained from the
mothers. Best estimates of GA at birth were ascertained using a
hierarchy of methods. A first-trimester (<14-wk GA) ultrasound
measurement of crown–rump length was considered the most
preferred and was used if available (n=163). If unavailable, a
second-trimester (<28-wk GA) ultrasound measurement of fetal
biparietal diameter was used (n=62). If measures from an early
ultrasound were unavailable, GA at birth was determined based
on the physician’s best clinical estimate, abstracted from the
medical records (n=35). If none of these measures were avail-
able, GA at birth was estimated using self-reported last menstrual
period dating (n=2).

Covariates
Questionnaires were administered in either English or Spanish,
depending on the participant’s preferred language. Maternal self-
reported prepregnancy weight, race, ethnicity, and birth country
were determined from a questionnaire that was administered dur-
ing the first study visit. In this questionnaire, participants were
also asked if they resided with a smoker during their pregnancy.
In questionnaires administered during their first, second, and third
trimesters, participants were additionally asked if they had ever
smoked during the pregnancy. Maternal standing height was
measured twice by stadiometer (Perspectives Enterprises; Model
PE-AIM-101). Maternal prepregnancy body mass index (BMI)
was calculated using the self-reported prepregnancy weight and
measured height values (in kilograms per meter squared). Each
participant’s age was determined using the date that she con-
sented and her birth date. A combined variable indicating race by
ethnicity and birth place was created based on the participant’s
self-reported race (white, Asian, black or African American,
Native Hawaiian or other Pacific Islander, American Indian or
Alaska Native, more than one race), ethnicity (Hispanic vs. non-
Hispanic), and birth country (United States vs. other). This vari-
able was collapsed into five categories: non-Hispanic white, non-
Hispanic black, non-Hispanic other, Hispanic born in the United
States, and Hispanic born outside the United States. A combined
variable was also created for any smoke exposure during the
pregnancy that was based on any self-reported maternal smoking
during the pregnancy or the participant sharing a residence with a
smoker during the pregnancy. Information on newborn sex was
abstracted from medical records. If this information was missing
from the maternal medical records, it was filled in using reports
from a questionnaire administered to the mothers 7–14 d after
birth. Maternal hemoglobin and hematocrit measures were also

abstracted from medical records for the pregnancy period. Using
GA-specific cutoffs for these measures (ACOG 2008), partici-
pants were classified as ever vs. never being anemic during the
pregnancy.

Statistical Analyses
Statistical analyses were conducted in R (version 3.6.2; R
Development Core Team). A priori, we hypothesized that toxic
(e.g., As, Cd, Hg, Pb, Tl) and essential (e.g., Co) elements would
act in opposing directions and further hypothesized that associa-
tions between essential/nutritional elements (e.g., Co, Ni) and
BW for GA would be nonlinear. Therefore, we used Bayesian
kernel machine regression (BKMR) (Bobb et al. 2015) as our pri-
mary mixture modeling approach because it is a flexible method
that does not constrain associations to a single direction, accom-
modates nonlinear associations between exposures and outcomes,
and evaluates all possible synergistic and antagonistic relation-
ships between mixture components without specifying these a
priori. Using the bkmr R package (Bobb et al. 2018), we chose
the variable selection option and ran 200,000 Markov chain
Monte Carlo (MCMC) iterations using the default priors. The
first half of iterations was used as burn-in. To reduce potential
autocorrelation, we thinned the chains, selecting every 25th itera-
tion. Model convergence was inspected using trace plots.

For the primary analysis, we used a hypothesis-driven approach
and collectively evaluated the seven selected urinary elements (As, Cd,
Co, Hg, Ni, Pb, Tl) in relation to BW for GA z-scores, using the fol-
lowing model: Yi = hðAsi, Cdi, Coi, Hgi, Nii, Pbi, TliÞ+ bTCi + ei,
where function hðÞ represents the exposure–response function
using the Gaussian kernel machine representation, the coefficient
bT represents effect estimates for the Cth covariate for the ith indi-
vidual, and ei represents the model residuals. Metals were gener-
ally right-skewed and were, therefore, log2-transformed to reduce
the influence of extreme values. In an exploratory analysis, we ran
a similar BKMR model that included three additional metals that
have been less studied in relation to fetal growth: Mo, Sb, and Sn.
Three participants had unusually low urinary Mo concentrations
(<1 lg=L) and were, therefore, excluded from the exploratory
analysis. We also identified two extreme high outliers for urinary
Sb (>1:5 lg=L) (Rosner 1983), who were also excluded.
Hypothesized confounders and precision variables were identified
using a directed acyclic graph (Figure S1) (Shrier and Platt 2008).
Final models were adjusted for recruitment site, maternal age, pre-
pregnancy BMI, race by ethnicity and birth place, any maternal
anemia in pregnancy, any smoke exposure (maternal or other) in
pregnancy, and urinary AsB [an objective biomarker of fish and
seafood consumption (Navas-Acien et al. 2011)]. Because urinary
AsBwas right-skewed, it was log2-transformed to reduce the influ-
ence of extreme values. Given that the BW for GA z-scores were
generated separately for male and female infants, infant sex was
not included as a covariate in the model. We also examined
whether results were sensitive to additional adjustment for the GA
at urine collection. All metals and continuous covariates were cen-
tered and scaled. Metals that ranked highly based on their BKMR
posterior inclusion probabilities (PIPs) were further investigated
using generalized additive models (GAMs), using the mgcv R
package (version 1.8-31; R Development Core Team) (Wood
2015). We also used GAMs to determine whether associations
from the primary model were robust after a) excluding extreme
metal outliers [identified by Rosner’s test (Rosner 1983)] and b)
adjusting for SG as a covariate as an alternative approach to
account for urine dilution.

Although BKMR can identify potential interactions between
pairs of mixture components, it does not generate PIPs for these
interactions. Therefore, we also investigated possible synergistic
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and antagonistic relationships between the seven elements by
applying a new method (Antonelli et al. 2020) that uses Bayesian
semiparametric regression and sparsity-inducing priors to gener-
ate PIPs for interactions in addition to main effects. To conduct
this analysis, we used the NLinteraction R package, specifying
200,000 MCMC iterations (half of which were removed for burn-
in) and using the default options (Antonelli et al. 2020). For this
method, the exposure–response relationships are modeled using
natural cubic splines; 2 degrees of freedom were selected for
these splines based on the Watanabe-Akaike information crite-
rion (Antonelli et al. 2020).

Given that both BKMR and NLinteraction are sensitive to the
choice of model priors, we conducted sensitivity analyses for
each approach. For BKMR, we compared results after varying
the parameter b, which controls the smoothness of the exposure–
outcome relationships. We investigated both a lower (b=50) and
higher (b=200) degree of smoothness. For NLinteraction, we
examined the impact of varying the threshold parameter sh,
which influences the likelihood of an exposure being included in
the function, from the default of 0.10 to a less conservative value
of 0.25. We also evaluated the NLinteraction results after man-
ually changing the r2

b parameter, which controls the variance for
the slab component of the prior, instead of estimating this param-
eter using the default empirical Bayes approach (Antonelli et al.
2020); we compared both a small (0.005) and larger (1) value
for r2

b.

Results

Participant Characteristics
Characteristics of participants in the present study are shown side by
side with all MADRES study participants who enrolled prior to fall
2019 at <20 wk of gestation and the subset of participants who
were excluded from this study (Table S1). Participants in the present
study were between 18 and 45 years of age at study enrollment. The
median (range) prepregnancy BMI was 27:5 ð15:7–53:6Þ kg=m2.
The majority of participants were Hispanic (44.3% Hispanic and
born outside the United States, 34.4% Hispanic and born in the
United States). Approximately 33% of the participants experienced
anemia during their pregnancy, and 8.0% reported either smoking
during their pregnancy or residing with a smoker. Urinary AsB con-
centrations ranged from <LOD to 483:7 lg=L with a median of
0:5 lg=L. Urinary metal concentrations are shown in Table 1, and
Pearson correlations between log2-transformed metals are shown in
Figure 1. The majority of metals were positively correlated with
each other, and the strongest positive correlation was between Co
andNi (r=0:65,p=8:4× 10−33).However, Co andHgwere signif-
icantly inversely correlated with each other (r= –0:14, p=0:02), as
wereNi andHg (r= –0:21, p=7:0× 10−4).

Primary Analysis
Using BKMR, Hg was estimated to have the highest PIP fol-
lowed by Ni (Table 2). When setting all other metals to their me-
dian, a linear inverse association was estimated between urinary
Hg and BW for GA (Figure 2), such that an increase from the
25th to 75th percentile was associated with a –0:11 [95% credible
interval (CI): −0:31, 0.09] standard deviation (SD) difference in
BW for GA. Varying Ni from its 25th to 75th percentile was
associated with a 0.10 (95% CI: −0:16, 0.35) SD difference in
BW for GA (Figure 2). Visually, the Ni association with BW for
GA appeared potentially nonlinear, with a positive association
estimated at low-to-moderate concentrations only. However, the
CIs were very wide at high levels of Ni, likely due to the small
number of participants represented. For Hg and Ni, the estimates

obtained after varying the smoothing parameter b were very simi-
lar to those obtained using the default specifications (Figure S2).
Although less pronounced, BKMR also identified inverse associ-
ations between both Pb and Tl with BW for GA, and a weak posi-
tive association for Co (Figure 2). The association between Cd
and BW for GA appeared null, and a very weak inverted U-
shaped relationship was estimated between As and BW for GA
(Figure 2). Estimates for all metals obtained from the primary
model were similar to those obtained by a model that additionally
adjusted for the GA at urine collection (Figure S3).

Several potential interactions between pairs of metals were
identified visually using BKMR (Figure 3). The positive associa-
tion between Ni and BW for GA appeared to be attenuated at
higher levels of Hg and Tl. In contrast, the inverse association
between Hg and BW for GA appeared stronger at higher levels of
Ni. In addition, the inverted U-shaped relationship between As
and BW for GA varied by levels of Hg and Tl. For As concentra-
tions below the inflection point, the positive association between
As and BW for GA appeared stronger at lower quantiles of Hg
and Tl. For As concentrations above the inflection point, the
inverse association between As and BW for GA was stronger at

Table 1. Specific gravity-adjusted urinary metal concentrationsa (n=262).

Metals Minimum 25th percentile Median 75th percentile Maximum

Metals included in primary analysis
As (lg=L) 1.09 4.50 5.81 8.09 325.97
Cd (lg=L) <LOD <LOD 0.14 0.26 1.07
Co (lg=L) <LOD 0.39 0.59 0.98 7.51
Hg (lg=L) <LOD 0.62 1.02 2.12 16.10
Ni (lg=L) <LOD 1.94 2.88 4.38 34.91
Pb (lg=L) <LOD 0.50 1.59 3.69 37.89
Tl (lg=L) <LOD 0.03 0.07 0.14 0.59

Metals additionally evaluated in exploratory analysisb

Mo (lg=L) 14.9 42.9 56.8 80.7 359.3
Sb (lg=L) <LOD <LOD 0.08 0.12 0.67
Sn (lg=L) <LOD 0.27 0.49 0.97 26.03

Note: As, arsenic; Cd, cadmium; Co, cobalt; Hg, mercury; LOD, limit of detection; Mo,
molybdenum; Ni, nickel; Pb, lead; Sb, antimony; Sn, tin; Tl, thallium.
aValues below the LOD were imputed to the LOD divided by the square root of 2 for all
statistical analyses.
bn=257.

Figure 1. Pearson correlations between log2-transformed urinary metals
(n=262). Stronger correlations are indicated by darker shades and larger
circles. *, p<0:05. See Table S7 for corresponding numeric data. Note: As, ar-
senic; Cd, cadmium; Co, cobalt; Hg, mercury; Ni, nickel; Pb, lead; Tl, thallium.
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higher quantiles of Hg and Tl. We also estimated a positive asso-
ciation for Cd at lower levels of Pb and Tl, a more pronounced
inverse association for Pb and BW for GA at higher levels of Cd
or lower levels of Hg or Ni and a stronger inverse association for
Tl at higher levels of all metals except Co (Figure 3).

Using the novel NLinteraction method (Antonelli et al.
2020), we additionally estimated PIPs for pairwise interactions
between element pairs. The interaction between Hg and Ni
ranked highest of all possible metal pairs (Table S2). However,
the PIPs for all pairwise interactions were very small. Compared
with BKMR, the individual metal PIPs were also small when
using the NLinteraction method, although the metal rankings
were consistent across methods (Table S3). The individual metal

PIPs and pairwise interaction PIPs were larger after increasing
the NLinteraction threshold parameter sh from the default value
of 0.10 to a less conservative value of 0.25 (Tables S3 and S4).
However, metal rankings were similar, with Hg and Ni ranking
highest both for their main effects and pairwise interaction.
The individual metal PIPs and pairwise interaction PIPs also
increased after setting r2

b to a very small value (0.005), instead of
estimating this parameter using the default empirical Bayes
approach (Table S3 and S5), but the metal rankings remained
similar. In contrast, all PIPs approached 0 when manually setting
this parameter to a higher value (r2

b =1) (Tables S3 and S6).
Given that a) the PIPs estimated for Hg and Ni ranked highest

both when using BKMR and NLinteraction and b) the PIP for the
interaction between Hg and Ni ranked highest of all possible pair-
wise interactions when using NLinteraction, we used GAMs to fur-
ther investigate their associations with BW for GA. Similar to
BKMR, GAMs estimated an inverse linear association between uri-
nary Hg and BW for GA (approximate p for smooth term=0:083)
(Figure S4). They also estimated a positive association between
urinary Ni and BW for GA at low-to-moderate concentrations
(approximate p for smooth term=0:256), with a wide degree of
uncertainty at the high end of exposure owing to few participants
falling in this range (Figure S5). Similar to the BKMR results, the
inverse association between Hg and BW for GA appeared stronger
among individuals with higher levels of Ni (Figure S4), and the
positive association for Ni and BW for GA appeared to be attenu-
ated in a dose-dependent manner with increasing levels of Hg
(Figure S5) (approximate p for tensor product smooth term for Hg
andNi p=0:096). On the log-scale, no extreme values were identi-
fied for urinary Hg using Rosner’s test. However, one extreme
high value was identified for urinary Ni (34:91 lg=L). Results
were similar after excluding this extreme outlier (Figures S4 and
S5) and also after adjusting for SG as a covariate to account for

Table 2. Individual metal posterior inclusion probabilities.

Metal

Primary analysis Exploratory analysis

PIP PIP

As 0.30 0.39
Cd 0.28 0.35
Co 0.31 0.38
Hg 0.40a 0.46a

Ni 0.35a 0.46a

Pb 0.29 0.41
Tl 0.29 0.38
Mo — 0.41
Sb — 0.58a

Sn — 0.45

Note: PIPs from a Bayesian kernel machine regression model, which was adjusted for
maternal age, prepregnancy BMI, recruitment site, race by ethnicity and birth place, any
maternal anemia in pregnancy, tobacco smoke exposure in pregnancy, and urinary
arsenobetaine. Metals and urinary arsenobetaine were log2-transformed. Metals and all
continuous covariates were also centered and scaled. —, not applicable; As, arsenic;
BMI, body mass index; Cd, cadmium; Co, cobalt; Hg, mercury; Mo, molybdenum; Ni,
nickel; Pb, lead; PIP, posterior inclusion probability; Sb, antimony; Sn, tin; Tl, thallium.
aThe highest-ranking elements for each model.

Figure 2. Univariate exposure–response functions for primary analysis (n=262). Associations between each metal and BW for GA z-score (with correspond-
ing 95% credible intervals) are shown setting all other metals to their median, adjusting for maternal age, prepregnancy BMI, recruitment site, race by ethnicity
and birth place, any maternal anemia in pregnancy, tobacco smoke exposure in pregnancy, and urinary arsenobetaine (AsB). A rug plot showing the distribu-
tion of the specified metal is shown along the x-axis of each panel. Metals and urinary AsB were log2-transformed. Metals and all continuous covariates were
also centered and scaled. Note: As, arsenic; BMI, body mass index; BW, birth weight; Cd, cadmium; Co, cobalt; GA, gestational age; Hg, mercury; Ni, nickel;
Pb, lead; Tl, thallium.
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urine dilution instead of applying an SG correction directly to the
metal concentrations (Figures S6 and S7). However, in both sets of
sensitivity analyses, the Ni–fetal growth relationship appeared lin-
ear across the full range of urinary Ni concentrations (Figures S5
and S7).

Exploratory Analysis
In an exploratory analysis that examined a larger mixture of met-
als, Sb ranked highest as a predictor of BW for GA, followed by
Hg and Ni (Table 2). An inverse association was estimated
between Sb and BW for GA at moderate-to-high concentrations
(Figure 4). Results for Hg and Ni were consistent with the pri-
mary model (Figure 4). Although Sn did not rank as highly as
these metals, an inverse and linear association was estimated
with BW for GA (Figure 4). A very weak inverted U-shape asso-
ciation was identified for Mo and BW for GA (Figure 4).

Discussion
Growing evidence suggests that toxic metal exposures adversely
affect fetal growth (Ballester et al. 2018; Cabrera-Rodríguez et al.
2018; Deyssenroth et al. 2018; Hoffman 2000; Jalali and Koski
2018; Khoshhali et al. 2020; Kim et al. 2017; Kippler et al. 2010;
Mikelson et al. 2019; Milton et al. 2017; Nielsen 2012; Pedersen
et al. 2016; Rabito et al. 2014; Ramón et al. 2009a;
Rodosthenous et al. 2017; Sun et al. 2018; Thomas et al. 2015;
Vaktskjold et al. 2007; Vejrup et al. 2014; Vigeh et al. 2018), but
the majority of studies have focused on individual metals.
Because metals may behave differently in the presence of metal
co-exposures owing to synergistic or antagonistic relationships

(Claus Henn et al. 2014; Davidson et al. 2015), studies have
begun investigating metal mixture impacts on fetal growth
(Cabrera-Rodríguez et al. 2018; Cassidy-Bushrow et al. 2019;
Deyssenroth et al. 2018; Govarts et al. 2016; Signes-Pastor et al.
2019). Using a novel mixture modeling method that can account
for possible nonlinear relationships and interactions between
mixture components (Bobb et al. 2015), we examined the impact
of a complex mixture of seven elements on BW for GA. In our
primary analysis, we focused on seven elements, selected based
on prior evidence that they may influence fetal growth, and iden-
tified Hg and Ni as the highest-ranking predictors of BW for GA.
Setting other metals to their median, an inverse linear association
was estimated for Hg and BW for GA and a positive association
was estimated for Ni at low-to-moderate concentrations. In an ex-
ploratory analysis that evaluated a larger panel of metals, Sb
ranked highest as a predictor of BW for GA; an inverse linear
association was estimated.

Our findings for Hg are consistent with several previous stud-
ies that also reported inverse associations between Hg exposure
and fetal growth (Ballester et al. 2018; Kim et al. 2017; Ou et al.
2015; Ramón et al. 2009a; Thomas et al. 2015; Vigeh et al.
2018). Although findings from previous studies on Ni and fetal
growth have been mixed (Cabrera-Rodríguez et al. 2018;
Deyssenroth et al. 2018; Jalali and Koski 2018; Sun et al. 2018;
Vaktskjold et al. 2007), several studies have similarly reported
that Ni may promote fetal growth, exhibited by greater increases
in fetal head circumference (Jalali and Koski 2018) or a reduced
odds of being small for GA (Deyssenroth et al. 2018; Vaktskjold
et al. 2007). Ni is not an essential element, but it does have nutri-
tional properties that may promote fetal growth (Nielsen 2012).

Figure 3. Bivariate exposure–response functions for primary analysis (n=262). Associations between each element (columns) and BW for GA z-score, setting
a second element (rows) to its 25th, 50th, and 75th percentile and all other elements to their median, adjusting for maternal age, prepregnancy BMI, recruitment
site, race by ethnicity and birth place, any maternal anemia in pregnancy, tobacco smoke exposure in pregnancy, and urinary arsenobetaine (AsB). Metals and
urinary AsB were log2-transformed. Metals and all continuous covariates were also centered and scaled. Note: As, arsenic; BMI, body mass index; BW, birth
weight; Cd, cadmium; Co, cobalt; GA, gestational age; Hg, mercury; Ni, nickel; Pb, lead; Tl, thallium.
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For example, studies in both animal models (Stangl et al. 2000)
and humans (Katko et al. 2008) have demonstrated that Ni sup-
plementation can reverse vitamin B12 deficiency and hyperho-
mocysteinemia, which are risk factors for low BW and fetal
growth restriction (Hogeveen et al. 2012; McGee et al. 2018).
Although the magnitudes of the associations for Hg and Ni were
small, they were similar to effect estimates previously reported
for other metals and BW for GA (Claus Henn et al. 2016;
Rodosthenous et al. 2017).

Using BKMR, we also identified a potential interaction
between Hg and Ni, and we similarly identified a suggestive
interaction (p<0:10) between this pair of metals when using
GAMs. Both sets of results suggest that the positive association
between Ni and BW for GA estimated at low-to-moderate con-
centrations may be attenuated by higher levels of Hg. It also sug-
gests that the inverse association between Hg and BW for GA
may be stronger at higher levels of Ni. The latter finding could be
due to the apparent attenuation of the positive Ni–fetal growth
association at high levels of Ni. However, there were very few
participants with Ni concentrations at the high end of exposure,
and the shape of the Ni–fetal growth relationship was sensitive to
an extreme outlier for Ni and the method used to account for
urine dilution. Future studies that span a wider range of urinary
Ni levels are therefore needed to better understand the shape of
this relationship, particularly at high concentrations. Importantly,
one limitation of BKMR is that it does not quantify the impor-
tance of potential interactions. Therefore, we also applied a novel
mixture modeling approach (NLinteraction) that can generate
PIPs for interactions between mixture components (Antonelli
et al. 2020). Using this method, we found the interaction between
Hg and Ni to rank highest of all possible metal pairs. However,
the PIP was extremely small. Thus, we cannot rule out the possi-
bility that this may have been a chance finding.

Although the magnitudes were small, the directions of associ-
ations for Co, Pb, and Tl with fetal growth were consistent with
previous studies (Govarts et al. 2016; Hu et al. 2015; Mikelson
et al. 2019; Rabito et al. 2014; Rodosthenous et al. 2017; Xia et al.
2016). The weak inverse association estimated for Pb may be
explained in part by the use of urine as a matrix because blood
concentrations are more sensitive to inter-individual differences
in Pb exposure (Sommar et al. 2014). Given that urine is an
accepted matrix for both Co and Tl (ATSDR 1992; Faroon et al.
2004), the weak associations estimated for these metals may be
due to the particular levels represented in the MADRES study.
For example, maternal urinary Tl levels were much lower [geo-
metric mean (GM): 0:07 lg=L] in the MADRES study compared
with a cohort of mother–newborn pairs in China (GM:
0:28 lg=L) that identified an association between Tl and risk of
low BW (Xia et al. 2016).

Although numerous studies have estimated inverse associa-
tions between Cd exposure and fetal growth (Khoshhali et al.
2020), the overall association between urinary Cd and BW for
GA appeared null in the MADRES study. This could be due to
the low urinary Cd concentrations in this population or to poten-
tial confounding from an unmeasured dietary factor given that
diet is the main source of Cd exposure among nonsmokers
(Faroon et al. 2012). For example, vegetable intake has been
associated with both Cd exposure and increases in fetal growth
(Faroon et al. 2012; Ramón et al. 2009b) and could induce a spu-
rious positive association between these two variables. This is
especially plausible for MADRES study participants because the
prevalence of maternal smoking during pregnancy is very low in
this population (2.7%), consistent with the overall prevalence
among Hispanic women in the United States (1.8%) (Drake et al.
2018), and maternal environmental tobacco smoke exposure dur-
ing pregnancy is also lower among Hispanic women (Hoshiko

Figure 4. Univariate exposure–response functions for exploratory analysis (n=257). Associations between each metal and BW for GA z-score (with corre-
sponding 95% credible intervals) are shown setting all other metals to their median, adjusting for maternal age, prepregnancy BMI, recruitment site, race by
ethnicity and birth place, any maternal anemia in pregnancy, tobacco smoke exposure in pregnancy, and urinary arsenobetaine (AsB). A rug plot showing the
distribution of the specified metal is shown along the x-axis of each panel. Metals and urinary AsB were log2-transformed. Metals and all continuous covariates
were also centered and scaled. Note: As, arsenic; BMI, body mass index; BW, birth weight; Cd, cadmium; Co, cobalt; GA, gestational age; Hg, mercury; Mo,
molybdenum; Ni, nickel; Pb, lead; Sb, antimony; Sn, tin; Tl, thallium.
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et al. 2019). Diet is, therefore, likely the main source of Cd expo-
sure for this population.

Similar to the findings for Cd, the overall association between
urinary As and BW for GA also appeared null. This finding differs
from those of most previous studies, which have estimated inverse
associations between As exposure and fetal growth, even at low
levels of exposure (Milton et al. 2017). In fact, in a previous study
that compared multiple biomarkers of As exposure (Howe et al.
2020), we estimated an inverse association between maternal hair
As and BW in the MADRES study but did not observe a similar
trend for urinary As (Howe et al. 2020). This discrepancy may be
due to the different arsenicals present in hair vs. urine. Although
hair is thought to primarily reflect inorganic As, urine represents a
complex mixture of arsenicals, with dimethyl arsenicals predomi-
nating (National Research Council 2013). These dimethyl arseni-
cals can reflect metabolized inorganic As, but they may also reflect
As from dietary sources, such as metabolized arsenosugars and
arsenolipids, which are derived from fish and seafood and thought
to be nontoxic (Navas-Acien et al. 2011). Although models were
adjusted for urinary AsB (Navas-Acien et al. 2011), a biomarker of
fish and seafood consumption, we cannot rule out the possibility of
residual confounding.

Although most of the metals evaluated in this study were lower
in MADRES study participants or were similar to concentrations
reported for pregnant women in the National Health and Nutrition
Examination Survey (NHANES) or other pregnancy cohorts, we
found urinary Hg and Pb concentrations to be higher on average
(Ashrap et al. 2020; Lewis et al. 2018; Watson et al. 2020). Fish/
seafood is the main source of methylHg for most populations, and
this form of Hg can be demethylated in the intestine and excreted
into urine (Li et al. 2019). However, the majority of MADRES
study participants reported rarely or never consuming fish/seafood
(Farzan et al. 2020). Furthermore, the correlation between AsB, a
biomarker of fish/seafood consumption (Navas-Acien et al. 2011),
and urinary Hg was very weak (r=0:08, p=0:18), which suggests
that other sources of Hg exposure may be important. Another
potential dietary source of Hg exposure could be rice (Davis et al.
2014) given that the majority of MADRES study participants
reported consuming rice frequently (Farzan et al. 2020), whereas
nondietary sources may include dental amalgams or the use of skin
whitening/lightening creams (Copan et al. 2015; Peregrino et al.
2011). Although Pb exposure has declined in many parts of the
world because of the removal of Pb additives from gasoline, expo-
sure from industrial sources, such as Pb smelters, is a growing con-
cern in urban areas, including Los Angeles (Johnston and Hricko
2017). Pb-based paint, which is still prevalent in older homes in the
United States (Kennedy et al. 2016), and certain imported food and
spices, such as chili powder (Handley et al. 2017; Hore et al. 2019),
may also contribute to exposure.

In an exploratory analysis, we investigated a larger panel of
metals, including Sb. Associations for Hg and Ni remained robust
after accounting for these additional metals. However, Sb ranked
highest as a predictor of BW for GA; an inverse association was
estimated between Sb and BW for GA at moderate-to-high con-
centrations. Although few studies have investigated the impacts
of Sb on fetal growth, we are aware of one previous study that
similarly identified an association between cord blood Sb concen-
trations and risk for low BW (Cabrera-Rodríguez et al. 2018).
Importantly, the urinary Sb concentrations in the MADRES study
were comparable to levels reported for pregnant women in the
NHANES (Watson et al. 2020). This suggests that Sb may
adversely impact fetal growth even at relatively low levels of ex-
posure, which merits additional investigation.

The present study had many strengths, including the prospec-
tive design, the measurement of a multimetals panel to evaluate

complex metal mixture exposures in early pregnancy, focusing
on an understudied population at higher risk for multipollutant
burdens (Cushing et al. 2015; Shim et al. 2017), the use of a mix-
ture modeling approach that simultaneously accounts for nonlin-
ear relationships and synergistic and antagonistic relationships
(Bobb et al. 2015), and the application of a novel method that for-
mally investigates interactions between mixture components
(Antonelli et al. 2020). However, our study also had several im-
portant limitations. Most notably, we were underpowered to eval-
uate possible differences by fetal sex, which have been reported
for certain metals (Cassidy-Bushrow et al. 2019; Govarts et al.
2016; Kippler et al. 2012; Milton et al. 2017; Signes-Pastor et al.
2019; Sun et al. 2018), and we measured urinary Pb concentra-
tions to profile Pb exposure. Although urinary Pb does capture
inter-individual differences in exposure, it is less sensitive than
blood Pb (Sommar et al. 2014), which may have biased results to-
ward the null. An additional limitation of our study was the use
of a single spot urine sample to assess metals exposure, which
may reflect only recent exposure for some metals (Wang et al.
2016). The use of a single urine measurement also precluded our
ability to compare metal exposures across different windows in
pregnancy. However, previous studies that measured metals at
multiple time points in pregnancy have identified the early prena-
tal period as a particularly sensitive window (Cheng et al. 2017;
Rabito et al. 2014; Vigeh et al. 2018). Another important consid-
eration is that some metals are mobilized from bone or are metab-
olized more efficiently as the pregnancy progresses (Gardner
et al. 2011; Gulson et al. 1997). However, our results were robust
after adjusting for the GA at urine collection. Finally, we cannot
rule out the possibility of unmeasured or residual confounding,
particularly from diet, as detailed dietary information was not
obtained for MADRES study participants in early pregnancy.

Given that reduced fetal growth has been associated with a
broad range of health consequences later in life (Barker and
Thornburg 2013), identifying modifiable factors that impact fetal
growth is critical. Of the seven elements evaluated in our primary
analysis, urinary Hg was identified as the element of greatest con-
cern because of its inverse association with fetal growth and pos-
sible antagonistic relationship with Ni. In exploratory analyses,
Sb was found to be an even stronger predictor of reduced fetal
growth. Identifying the major sources of Hg and Sb in this popu-
lation is, therefore, essential. Although the downstream health
consequences of our findings are currently unknown, the
MADRES cohort was designed to follow children through the
first 5 y of life. The impacts of prenatal exposure to these metals
on early life growth, adiposity, and other outcomes can, therefore,
be directly examined in future studies.
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